Lipschitz stability in inverse problems for a Kirchhoff plate equation

نویسندگان

  • Ganghua Yuan
  • Masahiro Yamamoto
چکیده

In this paper, we prove a Carleman estimate for a Kirchhoff plate equation and apply the Carleman estimate to inverse problems of determining spatially varying two Lamé coefficients and the mass density by a finite number of boundary observations. Our main results are Lipschitz stability estimates for the inverse problems under suitable conditions of initial values and boundary val-

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A remark on Lipschitz stability for inverse problems

An abstract Lipschitz stability estimate is proved for a class of inverse problems. It is then applied to the inverse Robin problem for the Laplace equation and to the inverse medium problem for the Helmholtz equation. Key-words: Derivative in the sense of Fréchet, Lipschitz stability, inverse Robin problem, inverse medium problem ha l-0 07 41 89 2, v er si on 1 15 O ct 2 01 2 Une remarque sur ...

متن کامل

Thermoelastic Damping and Frequency Shift in Kirchhoff Plate Resonators Based on Modified Couple Stress Theory With Dual-Phase-Lag Model

The present investigation deals with study of thermoelastic damping and frequency shift of Kirchhoff plate resonators by using generalized thermoelasticity theory of dual-phase-lag model. The basic equations of motion and heat conduction equation are written with the help of Kirchhoff-Love plate theory and dual phase lag model. The analytical expressions for thermoelastic damping and frequency ...

متن کامل

Monochromatic reconstruction algorithms for two-dimensional multi-channel inverse problems

We consider two inverse problems for the multi-channel two-dimensional Schrödinger equation at fixed positive energy, i.e. the equation −∆ψ+V (x)ψ = Eψ at fixed positive E, where V is a matrixvalued potential. The first is the Gel’fand inverse problem on a bounded domain D at fixed energy and the second is the inverse fixed-energy scattering problem on the whole plane R. We present in this pape...

متن کامل

Inverse Boundary Value Problem For The Helmholtz Equation: Quantitative Conditional Lipschitz Stability Estimates

We study the inverse boundary value problem for the Helmholtz equation using the Dirichlet-toNeumann map at selected frequencies as the data. A conditional Lipschitz stability estimate for the inverse problem holds in the case of wavespeeds that are a linear combination of piecewise constant functions (following a domain partition) and gives a framework in which the scheme converges. The stabil...

متن کامل

Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation

In this article, we present an inverse problem for the nonlinear 1-d Kuramoto-Sivashinsky (K-S) equation. More precisely, we study the nonlinear inverse problem of retrieving the anti-diffusion coefficient from the measurements of the solution on a part of the boundary and also at some positive time in the whole space domain. The Lipschitz stability for this inverse problem is our main result a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2007